

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

FDFMA2P859T

July 2009

Integrated P-Channel PowerTrench® MOSFET and Schottky Diode

-20 V, -3.0 A, 120 m Ω

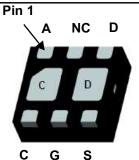
Features

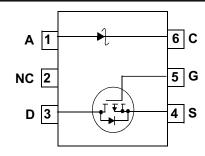
MOSFET:

- Max $r_{DS(on)}$ = 120 m Ω at V_{GS} = -4.5 V, I_D = -3.0 A
- \blacksquare Max $r_{DS(on)}$ = 160 m Ω at V_{GS} = –2.5 V, I_D = –2.5 A
- Max $r_{DS(on)}$ = 240 m Ω at V_{GS} = -1.8 V, I_D = -1.0 A

Schottky:

- V_F < 0.54 V @ 1 A
- Low profile 0.55 mm maximum in the new package MicroFET 2x2 **Thin**
- Free from halogenated compounds and antimony oxides
- RoHS compliant




General Description

This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra-portable applications. It features a MOSFET with low on-state resistance and an independently connected low forward voltage schottky diode for minimum conduction losses.

The MicroFET 2x2 **Thin** package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

MicroFET 2x2 Thin

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain to Source Voltage		20	V
V_{GSS}	Gate to Source Voltage		±8	V
1	Drain Current -Continuous	(Note 1a) -3		Α
l'D	-Pulsed		-6	
В	Power Dissipation	(Note 1a)	1.4	W
P _D	Power Dissipation	(Note 1b)	0.7	**
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C	
V_{RRM}	Schottky Repetitive Peak Reverse Voltage 30			
Io	Schottky Average Forward Current		1	Α

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	86	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	173	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1c)	86	C/VV
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1d)	140	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
59	FDFMA2P859T	MicroFET 2x2 Thin	7 "	8 mm	3000 units

1

Electrical Characteristics T_J = 25 °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	octeristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = -250 μ A, referenced to 25 °C		-12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -16 V, V _{GS} = 0 V			-1	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±8 V, V _{DS} = 0 V			±100	nA

On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-0.4	-0.7	-1.3	V
$\Delta V_{GS(\underline{t}h)}$ ΔT_J	Gate to Source Threshold Voltage Temperature Coefficient	I_D = –250 μA, referenced to 25 °C		2		mV/°C
		$V_{GS} = -4.5 \text{ V}, I_D = -3.0 \text{ A}$		90	120	
	Static Drain to Source On Resistance	$V_{GS} = -2.5 \text{ V}, I_D = -2.5 \text{ A}$		120	160	ı
r _{DS(on)}		$V_{GS} = -1.8 \text{ V}, I_D = -1.0 \text{ A}$		172	240	mΩ
		$V_{GS} = -4.5 \text{ V}, I_D = -3.0 \text{ A}$ $T_J = 125 ^{\circ}\text{C}$		118	160	
9 _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_{D} = -3.0 \text{ A}$		7		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V - 40 V V - 0 V	435	pF
C _{oss}	Output Capacitance	V _{DS} = -10 V, V _{GS} = 0 V, f = 1.0 MHz	80	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1.0 101112	45	pF

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		9	18	ns
t _r	Rise Time	$V_{DD} = -10 \text{ V}, I_{D} = -1.0 \text{ A}$	11	19	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$	15	27	ns
t _f	Fall Time		6	12	ns
$Q_{g(TOT)}$	Total Gate Charge	401/ 1 004	4	6	nC
Q_{gs}	Gate to Source Gate Charge	V_{DD} = -10 V, I_{D} = -3.0 A V_{GS} = -4.5 V	0.8		nC
Q_{gd}	Gate to Drain "Miller" Charge	VGS T.OV	0.9		nC

Drain-Source Diode Characteristics

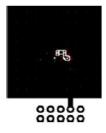
Is	Maximum Continuous Drain-Source Diode Forward Current				Α
V_{SD}	Source to Drain Diode Forward Voltage V _{GS} = 0 V, I _S = -1.1 A (Note 2)		-0.8	-1.2	V
t _{rr}	Reverse Recovery Time $I_{\text{E}} = -3.0 \text{ A. di/dt} = 100 \text{ A/us}$		17		ns
Q_{rr}	Reverse Recovery Charge		6		nC

Schottky Diode Characteristics

			T _J = 25 °C	0.3	1.0	μΑ
I _R	Reverse Leakage	V _R = 10 V	T _J = 85 °C	25	40	μΑ
			T _J = 125 °C	0.28	0.37	mA
			T _J = 25 °C	1.0	2.5	μΑ
I _R	Reverse Leakage	V _R = 20 V	T _J = 85 °C	74	110	μΑ
			T _J = 125 °C	0.73	1.00	mA
			T _J = 25 °C	0.40	0.41	V
V_{F}	Forward Voltage	I _F = 100 mA	T _J = 85 °C	0.31	0.33	V
			T _J = 125 °C	0.26	0.27	V
			T _J = 25 °C	0.52	0.54	V
V _F	Forward Voltage	I _F = 1 A	T _J = 85 °C	0.45	0.47	V
			T _J = 125 °C	0.41	0.43	V

Electrical Characteristics T_A = 25 °C unless otherwise noted

Notes:


- 1: $R_{\theta JA}$ is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.
 - (a) MOSFET $R_{\theta JA} = 86$ °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB.
 - (b) MOSFET $\rm R_{\theta JA}$ = 173 $^{o}\text{C/W}$ when mounted on a minimum pad of 2 oz copper.
 - (c) Schottky R_{0,JA} = 86 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB.
 - (d) Schottky $R_{\theta JA}$ = 140 $^{o}\text{C/W}$ when mounted on a minimum pad of 2 oz copper.

a)86 °C/W when mounted on a 1 in² pad of 2 oz copper.

b)173 °C/W when mounted on a minimum pad of 2 oz copper.

c)86 °C/W when mounted on a 1 in² pad of 2 oz copper.

d)140 °C/W when mounted on a minimum pad of 2 oz copper.

2: Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.

Typical Characteristics T_J = 25 °C unless otherwise noted

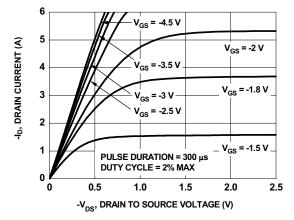


Figure 1. On-Region Characteristics

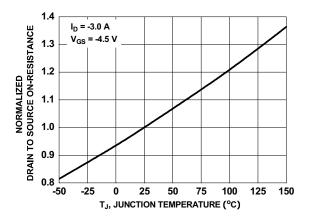


Figure 3. Normalized On-Resistance vs Junction Temperature

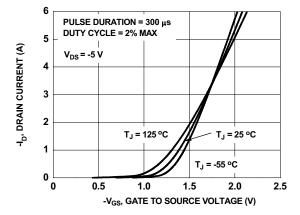


Figure 5. Transfer Characteristics

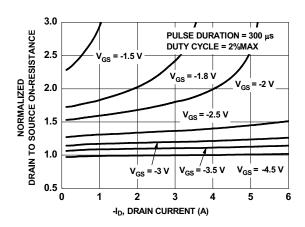


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

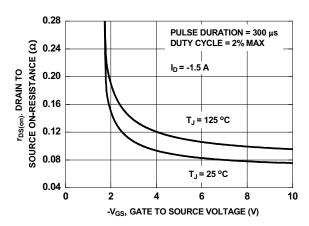


Figure 4. On-Resistance vs Gate to Source Voltage

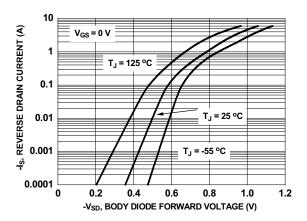


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics T_J = 25 °C unless otherwise noted

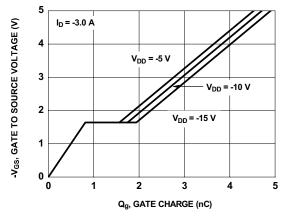


Figure 7. Gate Charge Characteristics

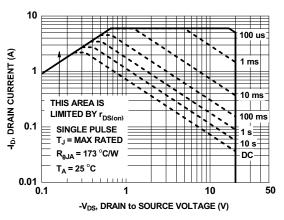


Figure 9. Forward Bias Safe Operating Area

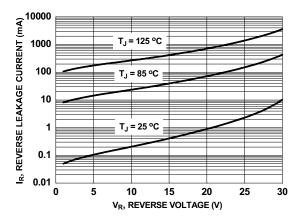


Figure 11. Schottky Diode Reverse Current

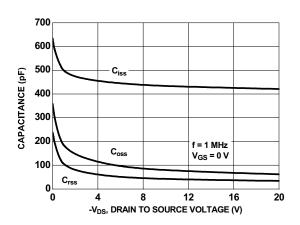


Figure 8. Capacitance vs Drain to Source Voltage

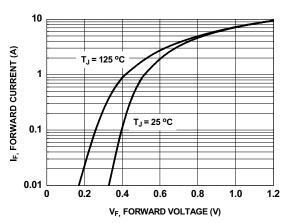


Figure 10. Schottky Diode Foward Voltage

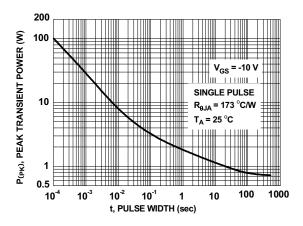
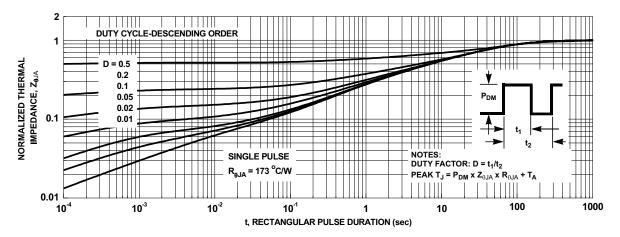
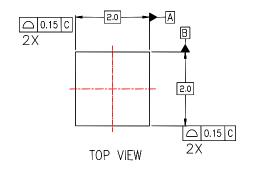
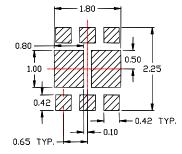
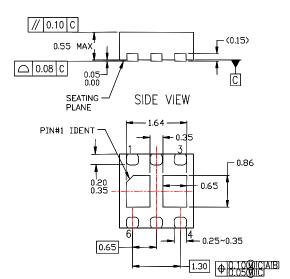


Figure 12. Single Pulse Maximum Power Dissipation

Typical Characteristics $T_J = 25$ °C unless otherwise noted


Figure 13. Junction to Ambient Transient Thermal Response Curve

Dimensional Outline and Pad Layout

RECOMMENDED LAND PATTERN

BOTTOM VIEW

NOTES:

- A. NON CONFORMS TO JEDEC REGISTRATION MO-288,
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLP06XrevA

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLTTM

CTI ™ Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH™*

Fairchild®

Fairchild Semiconductor® FACT Quiet Series™ FACT

FAST® FastvCore™ FETBench™ FlashWriter® * FPS™ F-PFS™ FRFET®

Global Power ResourceSM

Green FPS™ Green FPS™ e-Series™

Gmax™ GTO™

IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™

MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™ Power-SPM™ PowerTrench® PowerXS™ Programmable Active Droop™ OFFT OSTM

Quiet Series™ RapidConfigure™

Saving our world, 1mW /W /kW at a time™ SmartMax™

SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™

SYSTEM ® GENERAL

The Power Franchise®

puwer' franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™*

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I41

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative