2N4403 # **PNP General Purpose Amplifier** This device is designed for use as a general purpose amplifier and switch requiring collector currents to 500 mA. # **Absolute Maximum Ratings*** TA = 25°C unless otherwise noted | Symbol | Parameter | Value | Units | |-----------------------------------|--|-------------|-------| | V_{CEO} | Collector-Emitter Voltage | 40 | V | | V _{CBO} | Collector-Base Voltage | 40 | V | | V _{EBO} | Emitter-Base Voltage | 5.0 | V | | Ic | Collector Current - Continuous | 600 | mA | | T _J , T _{stg} | Operating and Storage Junction Temperature Range | -55 to +150 | °C | ^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. ### **Thermal Characteristics** TA = 25°C unless otherwise noted | Symbol | Characteristic | Max | | Units | | |------------------|--|------------|------------|-------------|--| | | | 2N4403 | *MMBT4403 | | | | P _D | Total Device Dissipation Derate above 25°C | 625
5.0 | 350
2.8 | mW
mW/°C | | | R _{θJC} | Thermal Resistance, Junction to Case | 83.3 | | °C/W | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 200 | 357 | °C/W | | ^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06." # PNP General Purpose Amplifier (continued) ns | Symbol | Parameter | Test Conditions | Min | Max | Units | |--|---|--|-------------------------|---|---------------------------------| | | | | | | | | OFF CHA | RACTERISTICS | | | | | | $V_{(BR)CEO}$ | Collector-Emitter Breakdown Voltage* | $I_C = 1.0 \text{ mA}, I_B = 0$ | 40 | | V | | $V_{(BR)CBO}$ | Collector-Base Breakdown Voltage | $I_C = 0.1 \text{ mA}, I_E = 0$ | 40 | | V | | V _{(BR)EBO} | Emitter-Base Breakdown Voltage | $I_E = 0.1 \text{ A}, I_C = 0$ | 5.0 | | V | | I _{BEX} | Base Cutoff Current | $V_{CE} = 35 \text{ V}, V_{EB} = 0.4 \text{ V}$ | | 0.1 | μΑ | | I _{CEX} | Collector Cutoff Current | $V_{CE} = 35 \text{ V}, V_{BE} = 0.4 \text{ V}$ | | 0.1 | μΑ | | | | | | | | | ON CHAF | RACTERISTICS | | | | | | h _{FE} | DC Current Gain | $I_C = 0.1 \text{ mA}, V_{CE} = 1.0 \text{ V}$ | 30 | | | | | | $I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$ | 60 | | | | | | $I_C = 10 \text{ mA}, V_{CE} = 1.0 \text{ V}$
$I_C = 150 \text{ mA}, V_{CE} = 2.0 \text{ V}^*$ | 100
100 | 300 | | | | | $I_C = 500 \text{ mA}, V_{CE} = 2.0 \text{ V}^*$ | 20 | 300 | | | V _{CE(sat)} | Collector-Emitter Saturation | $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ | | 0.4 | V | | 02(044) | Voltage* | $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$ | | 0.75 | V | | $V_{BE(sat)}$ | Base-Emitter Saturation Voltage | $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}^*$ | 0.75 | 0.95 | \ \ / | | | | I _C = 500 mA, I _B = 50 mA | 0.73 | 1.3 | V | | | GNAL CHARACTERISTICS | I _C = 500 mA, I _B = 50 mA | | | | | SMALL SI | | | 200 | | MHz | | | GNAL CHARACTERISTICS | I_C = 500 mA, I_B = 50 mA I_C = 20 mA, V_{CE} = 10 V, I_C = 100 MHz I_C = 0, | | | | | f _T
C _{cb} | GNAL CHARACTERISTICS Current Gain - Bandwidth Product | $\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CB} &= 10 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \end{split}$ | | 1.3 | MHz | | f _T C _{cb} C _{eb} | GNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance | $\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CB} &= 10 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \end{split}$ | | 8.5 | MHz
pF | | f⊤ | GNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance | $\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CB} &= 10 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \end{split}$ | 200 | 8.5
30 | MHz
pF
pF | | fr
C _{cb}
C _{eb}
h _{ie} | GNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance | $\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CB} &= 10 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \end{split}$ | 200 | 8.5
30
15 | MHz
pF
pF
kΩ | | fr
C _{cb}
C _{eb}
h _{ie}
h _{re} | GNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio | $\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CB} &= 10 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ \end{split}$ | 200
1.5
0.1 | 8.5
30
15
8.0 | MHz
pF
pF
kΩ | | fr
C _{cb}
C _{eb}
h _{ie}
h _{re} | GNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain | $\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CB} &= 10 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ mA}, \ V_{CE} =$ | 200
1.5
0.1
60 | 8.5
30
15
8.0
500 | MHz pF pF kΩ x 10 ⁻⁴ | | fr
Ccb
Ceb
hie
hre
hfe | GNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain | $\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ V_{CB} &= 10 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C $ | 200
1.5
0.1
60 | 8.5
30
15
8.0
500 | MHz pF pF kΩ x 10 ⁻⁴ | | fT Ccb Ceb hie hre hoe | GNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain Output Admittance | $\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CB} &= 10 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ mA}, \ V_{CE} =$ | 200
1.5
0.1
60 | 8.5
30
15
8.0
500 | MHz pF pF kΩ x 10 ⁻⁴ | | fr
Ccb
Ceb
hie
hre
hfe | GNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain Output Admittance | $\begin{split} I_C &= 500 \text{ mA}, \ I_B = 50 \text{ mA} \\ I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ V_{CB} &= 10 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C $ | 200
1.5
0.1
60 | 1.3
8.5
30
15
8.0
500
100 | MHz pF pF kΩ x 10 ⁻⁴ | $I_{B1} = I_{B2} = 15 \text{ mA}$ Fall Time ^{*}Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0% (continued) # **Typical Characteristics** (continued) # Typical Characteristics (continued) Switching Times vs Collector Current # Turn On and Turn Off Times vs Collector Current Rise Time vs Collector and Turn On Base Currents ### Power Dissipation vs Ambient Temperature (continued) # **Typical Common Emitter Characteristics** (f = 1.0kHz) (continued) # **Test Circuits** FIGURE 1: Saturated Turn-On Switching Time Test Circuit FIGURE 2: Saturated Turn-Off Switching Time Test Circuit #### **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM} TruTranslation™ STAR*POWER is used under license #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|---------------------------|---| | Advance Information | Formative or
In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. | Rev. H4