MPS2222A is a Preferred Device # **General Purpose Transistors** # **NPN Silicon** #### **Features** • Pb-Free Packages are Available* # **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|-----------------------------------|-------------|-------------| | Collector – Emitter Voltage MPS2222 MPS2222A | V _{CEO} | 30
40 | Vdc | | Collector – Base Voltage MPS2222 MPS2222A | V _{CBO} | 60
75 | Vdc | | Emitter – Base Voltage MPS2222 MPS2222A | V _{EBO} | 5.0
6.0 | Vdc | | Collector Current – Continuous | I _C | 600 | mAdc | | Total Device Dissipation @ T _A = 25°C Derate above 25°C | P _D | 625
5.0 | mW
mW/°C | | Total Device Dissipation @ T _C = 25°C Derate above 25°C | P _D | 1.5
12 | W
mW/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -55 to +150 | °C | # THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------|------|------| | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 200 | °C/W | | Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 83.3 | °C/W | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. # ON Semiconductor® #### http://onsemi.com #### **MARKING DIAGRAMS** #### MPS2222AC A = Assembly Location ′ = Year WW = Work Week ■ = Pb-Free Package (Note: Microdot may be in either location) #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. **Preferred** devices are recommended choices for future use and best overall value. ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # **ELECTRICAL CHARACTERISTICS** ($T_A = 25^{\circ}C$ unless otherwise noted) | Characteristic | | Symbol | Min | Max | Unit | |---|--|----------------------|---|------------------------------|--------------------| | OFF CHARACTERISTICS | | | | | | | Collector – Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0) | MPS2222
MPS2222A | V _{(BR)CEO} | 30
40 | _
_ | Vdc | | Collector – Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0) | MPS2222
MPS2222A | V _{(BR)CBO} | 60
75 | _
_ | Vdc | | Emitter – Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$) | MPS2222
MPS2222A | V _{(BR)EBO} | 5.0
6.0 | _
_ | Vdc | | Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 3.0 Vdc) | MPS2222A | I _{CEX} | - | 10 | nAdc | | | MPS2222
MPS2222A
MPS2222
MPS2222A | Ісво | -
-
-
- | 0.01
0.01
10
10 | μAdc | | Emitter Cutoff Current (V _{EB} = 3.0 Vdc, I _C = 0) | MPS2222A | I _{EBO} | - | 100 | nAdc | | Base Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 3.0 Vdc) | MPS2222A | I_{BL} | - | 20 | nAdc | | ON CHARACTERISTICS | | | | | | | DC Current Gain $ \begin{array}{l} (I_C=0.1 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ (I_C=1.0 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ (I_C=10 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ (I_C=10 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ (I_C=10 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ (I_C=150 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ (I_C=150 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ (I_C=500 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ (Note 1) \\ (I_C=500 \text{ mAdc, } V_{CE}=10 \text{ Vdc}) \\ (Note 1) \\ \end{array} $ | MPS2222A only
MPS2222
MPS2222A | h _{FE} | 35
50
75
35
100
50
30
40 | -
-
-
300
-
- | - | | Collector – Emitter Saturation Voltage (Note 1) $ (I_{C} = 150 \text{ mAdc}, I_{B} = 15 \text{ mAdc}) $ $ (I_{C} = 500 \text{ mAdc}, I_{B} = 50 \text{ mAdc}) $ | MPS2222
MPS2222A
MPS2222
MPS2222A | V _{CE(sat)} | -
-
-
- | 0.4
0.3
1.6
1.0 | Vdc | | Base – Emitter Saturation Voltage (Note 1) $(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc})$ $(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$ | MPS2222
MPS2222A
MPS2222
MPS2222A | V _{BE(sat)} | _
0.6
_
_ | 1.3
1.2
2.6
2.0 | Vdc | | SMALL-SIGNAL CHARACTERISTICS | | | | | | | Current – Gain – Bandwidth Product (Note 2)
(I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz) | MPS2222
MPS2222A | f _T | 250
300 | _
_ | MHz | | Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz) | | C _{obo} | - | 8.0 | pF | | Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}$, $I_{C} = 0$, $f = 1.0 \text{ MHz}$) | MPS2222
MPS2222A | C _{ibo} | | 30
25 | pF | | Input Impedance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) | MPS2222A
MPS2222A | h _{ie} | 2.0
0.25 | 8.0
1.25 | kΩ | | Voltage Feedback Ratio ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) | MPS2222A
MPS2222A | h _{re} | | 8.0
4.0 | X 10 ⁻⁴ | | Small–Signal Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) | MPS2222A
MPS2222A | h _{fe} | 50
75 | 300
375 | - | | Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) | MPS2222A
MPS2222A | h _{oe} | 5.0
25 | 35
200 | μmhos | | Collector Base Time Constant
(I _E = 20 mAdc, V _{CB} = 20 Vdc, f = 31.8 MHz) | MPS2222A | rb′C _c | _ | 150 | ps | | Noise Figure (I _C = 100 μAdc, V _{CE} = 10 Vdc, R _S = 1.0 kΩ, f = 1.0 kHz) 1. Pulse Test: Pulse Width < 300 μs. Duty Cycle < 2% | MPS2222A | NF | _ | 4.0 | dB | ^{1.} Pulse Test: Pulse Width $\leq 300~\mu s$, Duty Cycle $\leq 2\%$. 2. f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity. **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) (Continued) | Characteristic | | Symbol | Min | Max | Unit | |---|--|----------------|-----|-----|------| | SWITCHING CHARACTERISTICS MPS2222A only | | | | | | | Delay Time | $(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = -0.5 \text{ Vdc},$ | t _d | - | 10 | ns | | Rise Time | $I_C = 150 \text{ mAdc}, I_{B1} = 15 \text{ mAdc}) \text{ (Figure 1)}$ | t _r | - | 25 | ns | | Storage Time | (V _{CC} = 30 Vdc, I _C = 150 mAdc, | t _s | - | 225 | ns | | Fall Time | $I_{B1} = I_{B2} = 15 \text{ mAdc}$) (Figure 2) | t _f | - | 60 | ns | # **SWITCHING TIME EQUIVALENT TEST CIRCUITS** Figure 1. Turn-On Time Figure 2. Turn-Off Time Figure 3. DC Current Gain Figure 4. Collector Saturation Region Figure 5. Turn-On Time Figure 6. Turn – Off Time Figure 7. Frequency Effects Figure 8. Source Resistance Effects Figure 9. Capacitances Figure 10. Current-Gain Bandwidth Product Figure 11. "On" Voltages Figure 12. Temperature Coefficients # **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|--------------------|------------------------| | MPS2222 | TO-92 | 5000 Units / Bulk | | MPS2222G | TO-92
(Pb-Free) | 5000 Units / Bulk | | MPS2222RLRA | TO-92 | 2000 / Tape & Reel | | MPS2222RLRAG | TO-92
(Pb-Free) | 2000 / Tape & Reel | | MPS2222RLRM | TO-92 | 2000 / Tape & Ammo Box | | MPS2222RLRMG | TO-92
(Pb-Free) | 2000 / Tape & Ammo Box | | MPS2222RLRP | TO-92 | 2000 / Tape & Ammo Box | | MPS2222RLRPG | TO-92
(Pb-Free) | 2000 / Tape & Ammo Box | | MPS2222A | TO-92 | 5000 Units / Bulk | | MPS2222AG | TO-92
(Pb-Free) | 5000 Units / Bulk | | MPS2222ARL | TO-92 | 2000 / Tape & Reel | | MPS2222ARLG | TO-92
(Pb-Free) | 2000 / Tape & Reel | | MPS2222ARLRA | TO-92 | 2000 / Tape & Reel | | MPS2222ARLRAG | TO-92
(Pb-Free) | 2000 / Tape & Reel | | MPS2222ARLRM | TO-92 | 2000 / Tape & Reel | | MPS2222ARLRMG | TO-92
(Pb-Free) | 2000 / Tape & Reel | | MPS2222ARLRP | TO-92 | 2000 / Tape & Ammo Box | | MPS2222ARLRPG | TO-92
(Pb-Free) | 2000 / Tape & Ammo Box | | MPS2222AZL1 | TO-92 | 2000 / Tape & Ammo Box | | MPS2222AZL1G | TO-92
(Pb-Free) | 2000 / Tape & Ammo Box | | MPS2222ACRLRP | TO-92 | 2000 / Tape & Ammo Box | | MPS2222ACRLRPG | TO-92
(Pb-Free) | 2000 / Tape & Ammo Box | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### PACKAGE DIMENSIONS TO-92 (TO-226) CASE 29-11 **ISSUE AL** - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - 114-3M, 1902. CONTROLLING DIMENSION: INCH. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. LEAD DIMENSION IS UNCONTROLLED IN P AND - BEYOND DIMENSION K MINIMUM. | | INCHES | | MILLIMETERS | | |-----|--------|-------|-------------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.175 | 0.205 | 4.45 | 5.20 | | В | 0.170 | 0.210 | 4.32 | 5.33 | | С | 0.125 | 0.165 | 3.18 | 4.19 | | D | 0.016 | 0.021 | 0.407 | 0.533 | | G | 0.045 | 0.055 | 1.15 | 1.39 | | Н | 0.095 | 0.105 | 2.42 | 2.66 | | J | 0.015 | 0.020 | 0.39 | 0.50 | | K | 0.500 | | 12.70 | | | L | 0.250 | | 6.35 | | | N | 0.080 | 0.105 | 2.04 | 2.66 | | P | | 0.100 | | 2.54 | | R | 0.115 | | 2.93 | | | V | 0.135 | | 3.43 | | STYLE 1: PIN 1. EMITTER BASE COLLECTOR ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. # **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA **Phone**: 480–829–7710 or 800–344–3860 Toll Free USA/Canada **Fax**: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.