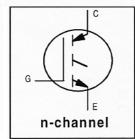
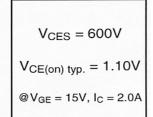
International Rectifier

IRG4RC10SPbF

Standard Speed IGBT


INSULATED GATE BIPOLAR TRANSISTOR


Features

- Extremely low voltage drop; 1.0V typical at 2A, 100°C
- Standard: Optimized for minimum saturation voltage and low operating frequencies (< 1kHz)
- Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than previous generation
- Industry standard TO-252AA package
- · Lead-Free

Benefits

- · Generation 4 IGBT's offer highest efficiency available
- · IGBT's optimized for specified application conditions

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{CES}	Collector-to-Emitter Breakdown Voltage	600	V	
I _C @ T _C = 25°C	Continuous Collector Current	14		
C @ T _C = 100°C Continuous Collector Current		8.0	_ A	
Ісм	Pulsed Collector Current ①	18		
I _{LM}	Clamped Inductive Load Current ②	18		
V _{GE}	Gate-to-Emitter Voltage	± 20	V	
E _{ARV}	Reverse Voltage Avalanche Energy 3	110	mJ	
P _D @ T _C = 25°C	@ T _C = 25°C Maximum Power Dissipation		w	
P _D @ T _C = 100°C	Maximum Power Dissipation	15	\ \v	
TJ	Operating Junction and	-55 to + 150		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm) from case)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case	_	3.3 °C/	
R _{0JA}	Junction-to-Ambient (PCB mount)*		50	7 C/VV
Wt	Weight	0.3 (0.01)		g (oz)

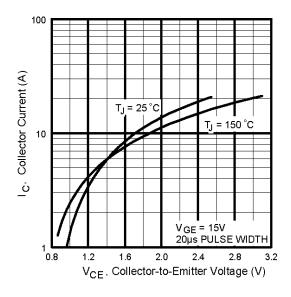
^{*} When mounted on 1" square PCB (FR-4 or G-10 Material).

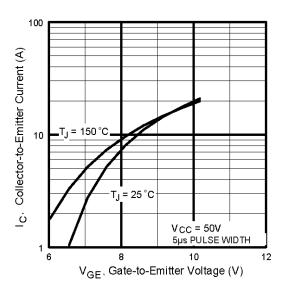
For recommended footprint and soldering techniques refer to application note #AN-994

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600	_	_	V	$V_{GE} = 0V$. $I_{C} = 250 \mu A$	
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage ®	18	_	_	V	$V_{GE} = 0V$, $I_{C} = 1.0A$	
$\Delta V_{(BR)CBS}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	0.64	_	V/°C	$V_{GE} = 0V$, $I_{C} = 1.0mA$	
		_	1.58	1.8		I _C = 8.0A V _{GE} =	15V
V _{CE(ON)}	Collector-to-Emitter Saturation Voltage	_	2.05	l —	l v l	I _C = 14A See F	ig.2, 5
		_	1.68		ľ	I _C = 8.0A , T _J = 150°C	
V _{GE[th]}	Gate Threshold Voltage	3.0	_	6.0		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
$\Delta V_{GE(th)}/\Delta T_J$	Temperature Coeff. of Threshold Voltage	_	-9.5	_	mV/°C	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
g _{to}	Forward Transconductance ©	3.7	5.5	_	s	V _{CE} = 100V, I _C = 8.0A	
I _{CES}	Zero Gate Voltage Collector Current	_	_	250	μА	V _{GE} = 0V, V _{CE} = 600V	
*CES	Zero cate votage concetta current	_	_	2.0	par t	V _{GE} = 0V, V _{CE} = 10V, T _J = 25°C	;
		_	_	1000	1	V _{GE} = 0V, V _{CE} = 600V, T _J = 150)°C
Iges	Gate-to-Emitter Leakage Current	_	_	±100	nΑ	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)


	Parameter	Min.	Тур.	Max.	Units	Conditions	
Qg	Total Gate Charge (turn-on)	_	15	22		I _C = 8.0A	
Q _{0e}	Gate - Emitter Charge (turn-on)		2.4	3.6	nC	V _{CC} = 400V See Fig. 8	
Q _{oc}	Gate - Collector Charge (turn-on)		6.5	9.8		V _{GE} = 15V	
d(on)	Turn-On Delay Time		25	_			
r	Rise Time		28	_	ns	T _J = 25°C	
d(off)	Turn-Off Delay Time		630	950	115	I _C = 8.0A, V _{CC} = 480V	
r	Fall Time		710	1100		V _{OE} = 15V, R _O = 100Ω	
Eon	Turn-On Switching Loss		0.14	_		Energy losses include "tail"	
Eoff	Turn-Off Switching Loss		2.58	_	mJ	See Fig. 9, 10, 14	
Ets	Total Switching Loss		2.72	4.3			
d(on)	Turn-On Delay Time		24	_		T _J = 150°C,	
r	Rise Time		31	_	ns	I _C = 8.0A, V _{CC} = 480V	
d(off)	Turn-Off Delay Time		810	_	115	$V_{GE} = 15V, R_{G} = 100\Omega$	
f	Fall Time		1300	_		Energy losses include "tail"	
Ets	Total Switching Loss		3.94	_	mJ	See Fig. 11, 14	
LE	Internal Emitter Inductance		7.5	_	nH	Measured 5mm from package	
Dies	Input Capacitance	_	280	_		V _{GE} = 0V	
Coes	Output Capacitance		30	_	pF	V _{CC} = 30V See Fig. 7	
Cres	Reverse Transfer Capacitance	_	4.0	_		f = 1.0 MHz	


Notes:

- Repetitive rating; V_{GE} = 20V, pulse width limited by max. junction temperature. (See fig. 13b)
- $\ \ \, \ \ \, V_{CC}$ = 80%(V_{CCS}), V_{GC} = 20V, L = 10µH, R $_{G}$ = 100 $\Omega,$ (See fig. 13a)
- Repetitive rating; pulse width limited by maximum junction temperature.
- Pulse width ≤ 80µs; duty factor ≤ 0.1%.
- S Pulse width 5.0µs, single shot.

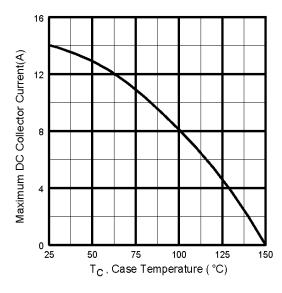

Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

Fig. 2 - Typical Output Characteristics www.irf.com

Fig. 3 - Typical Transfer Characteristics

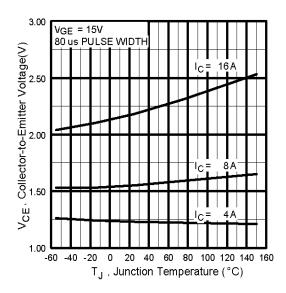


Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

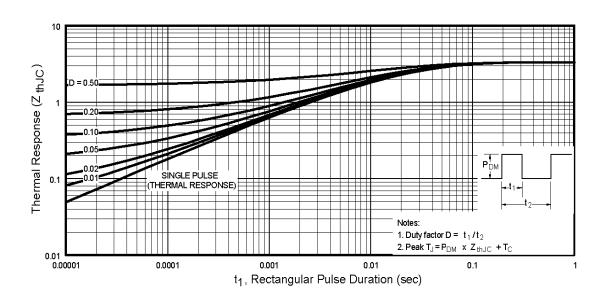
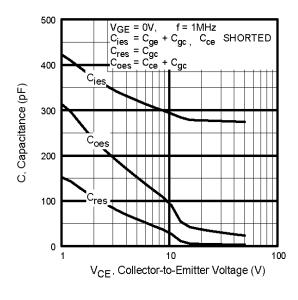



Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

IRG4RC10SPbF

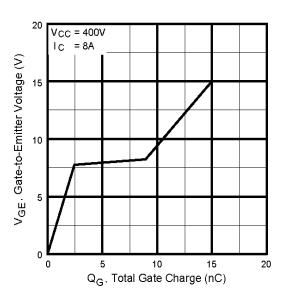
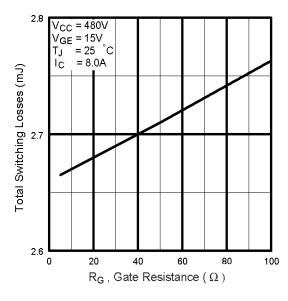



Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

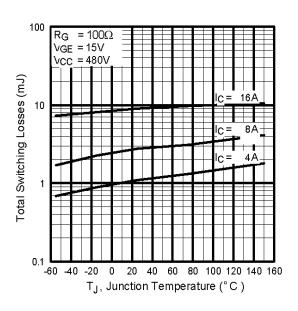
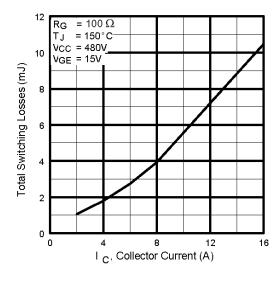
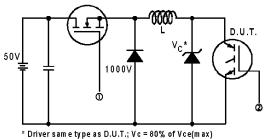



Fig. 9 - Typical Switching Losses vs. Gate Resistance


Fig. 10 - Typical Switching Losses vs. Junction Temperature

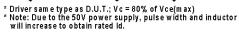

International TOR Rectifier

Fig. 11 - Typical Switching Losses vs. Collector Current

Fig. 12 - Turn-Off SOA

0 - 480V RL = 480V 480VF 960VF

Fig. 13b - Pulsed Collector Current Test Circuit

Fig. 13a - Clamped Inductive Load Test Circuit

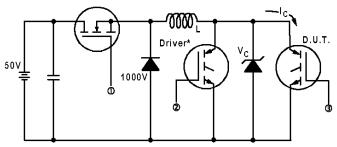
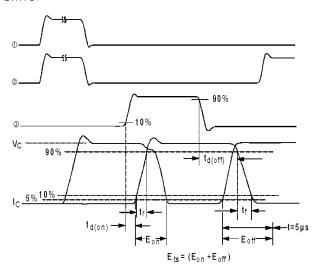
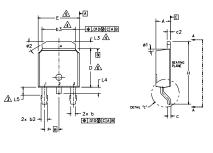


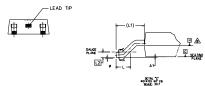
Fig. 14a - Switching Loss Test Circuit

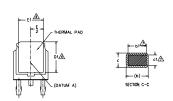
* Driver same type as D.U.T., VC = 480V

International TOR Rectifier

IRG4RC10SPbF


Fig. 14b - Switching Loss Waveforms



D-Pak (TO-252AA) Package Outline

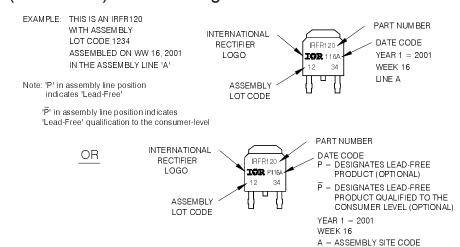
Dimensions are shown in millimeters (inches)

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14,5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- A- LEAD DIMENSION UNCONTROLLED IN LS.
 A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.— SECTION C.—C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.

 \$\int_{\text{c}}\$ DIMENSION D & \(\ell \) E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SOC. THESE DIMENSIONS ARE WEASURED AT THE OUTMOST EXTREMES DF THE PLASTIC BODY.
- DIMENSION 61 & c1 APPLIED TO BASE METAL ONLY.
- A- DATUM A & B TO BE DETERMINED AT DATUM PLANE H
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

S Y M		Ŋ			
B	MILLIM	ETERS	INC	O T E S	
O L	MIN.	MAX.	MIN.	IIN. MAX.	
Α	2.18	2,39	.086	.094	
A1	-	0.13	-	.005	
b	0,64	0.89	.025	.035	
ь1	0.65	0.79	.025	.031	7
b2	0.76	1,14	.030	.045	
b3	4,95	5,46	.195	.215	4
С	0,46	0.61	.018	.024	
c1	0.41	0.56	.016	.022	7
c2	0,46	0.89	.018	.035	
D	5.97	6.22	.235	.245	6
D1	5.21	-	.205	-	4
Ε	6,35	6,73	.250	,265	6
E1	4.32	-	.170	-	4
е	2,29	BSC	.090		
Н	9.40	10.41	.370	.410	
L	1,40	1,78	.055	.070	
L1	2.74	BSC	.108	REF,	
L2	0.51	BSC	.020 BSC		
L3	0.89	1.27	.035	.050	4
L4	-	1.02	-	.040	
L5	1,14	1.52	.045	.060	3
ø	0.	10"	0.	10*	
ø1	0.	15*	0.	15*	
ø2	25*	35*	25*	35°	

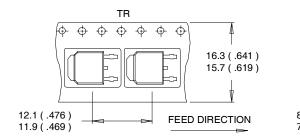
LEAD ASSIGNMENTS

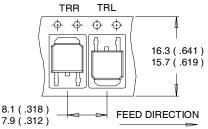

HEXFET

- 1.- GATE
- 2.- DRAIN 3.- SOURCE 4.- DRAIN

IGBT & CoPAK

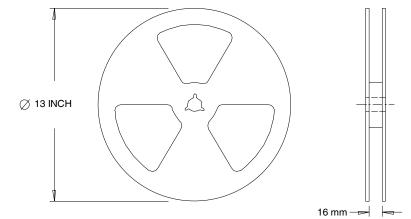
1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR


D-Pak (TO-252AA) Part Marking Information



Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D-Pak (TO-252AA) Tape & Reel Information


Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 06/07