Date: 2011/ 8/ 4

KB101-11315-431

Messrs: Digi-Key

Specification

%In the case of specification change, KKC Part Number also will change.

Customer part number	-					
Customer specification Number	-					
Product	Quartz Crystal					
Model	CX3225GB					
Frequency	per KB101-11315-431 3/12					
KKC Part Number	per KB101-11315-431 3/12					

[RoHS compliant, MSL 1]

[STAMP]

Sales office

KYOCERA Corporation
(Electronic Components Sales Division)
Head Office 6 Takeda Tobadono-cho, Fushimi-ku,
Kyoto 612-8501 Japan
TEL 075-604-3500
FAX 075-604-3501

Production

KYOCERA KINSEKI Corporation (Crystal Unit Sales Promotion Division) 1-8-1, Izumi-honcho, Komae-Shi, Tokyo 201-8648 Japan TEL 03-5497-3111 FAX 03-5497-3209

Design

KYOCERA KINSEKI Yamagata Co. Crystal Units Overseas Design Section Crystal Units Division 1

Issued by Approved by

%Recycled paper is being used for the conservation of nature.

Date: 2011/ 8/ 4

KB101-11315-431

Rev	DESCRPTION	DATE	DRAWN	CHECKED	APPROVED
0	Spec release	2011/ 8/ 4	A. Mydio	Maduch	0

KB101-11315-431

Date: 2011/ 8/ 4

[PART NUMBER LIST]

Nominal Frequency (MHz)	KKC Part number	ESR (Ω)	Nominal Frequency Code
10	CX3225GB10000D0HPQZ1	300	10000
12	CX3225GB12000D0HPQZ1	250	12000
14.31818	CX3225GB14318D0HPQZ1	100	14318
16	CX3225GB16000D0HPQZ1	80	16000
20	CX3225GB20000D0HPQZ1	60	20000
24	CX3225GB24000D0HPQZ1	60	24000
25	CX3225GB25000D0HPQZ1	60	25000
27	CX3225GB27000D0HPQZ1	50	27000
32	CX3225GB32000D0HPQZ1	50	32000
40	CX3225GB40000D0HPQZ1	50	40000
48	CX3225GB48000D0HPQZ1	50	48000

KB101-11315-431

Date: 2011/ 8/ 4

1. APPLICATION

This specification sheet is applied to quartz crystal "CX3225GB".

2. PART NUMBER

per KB101-11315-431 3/12

3. RATINGS

Items	SYMB.	Rating	Unit	Remarks
Operating Temperature	Topr	-40~+85	°C	
Storage Temperature range	Tstg	-40~+85	°C	

4. CHARACTERISTICS 4-1 ELECTRICAL CHARACTERISTICS

	Electrical Specification					Test	Remarks	
Items	SYMB.	Min	Typ.	Max	Unit	Condition	Nemaina	
Mode of Vibration		I	Fundament	al				
Nominal Frequency	F0		*		MHz			
Nominal Temperature	Т _{NOM}		25		°C			
Load Capacitance	CL		8.0		pF			
Frequency Tolerance	df/F	-20.0		+20.0		+25±3°C Network Analyzer E5100A 200 μ A		
Frequency Temperature characteristics	df/F	-30.0		+30.0	PPM	-40∼+85°C	+25±3°C	
Frequency Aging Rate		-5.0		+5.0		1 year	+25±3°C	
Equivalent Series Resistance	ESR			*	Ohms	Network Analyzer E5100A 200 µ A		
Drive Level	Pd	0.01		100	μ W			
Insulation Resistance	IR	500			M ohms	100V(DC)		

※ per KB101-11315-431 3/12

KB101-11315-431

Date: 2011/ 8/ 4

Date: 2011/ 8/ 4

7. Quality Assurance

Location

KYOCERA KINSEKI Philippines, Inc. : KYOCERA KINSEKI Philippines, Inc. Quality Assurance Division

Quality guarantee

When the failure by the responsibility of our company occurs clearly after delivery within 1 year, a substitute article etc. is appropriated gratuitously and this is guaranteed. However, when passing 1 year after delivery, there is a case where I am allowed to consider as onerous repair after both consultation.

KB101-11315-431

Date: 2011/ 8/ 4

No.	KB101-11315-431
INO.	ND101-11310-431

Date: 2011/ 8/ 4

In the case of Φ 180 Reel(1000 or 3000 pcs)

		<u> </u>		
	A	В	С	D
Dimension	φ 180 +0/-1.5	φ 60 +1/-0	φ 13±0.2	φ21±0.8
Symbol	E	W	t	
Dimension	2.0±0.5	9±1	2.0±0.5	

(Unit : mm)

KB101-11315-431

_____ Date: 2011/ 8/ 4

9.1	Resistance to Shock	Test condition Natural dropped from height 100cm onto hard wood board in 3 times
9.2	Resistance to Vibration	Test conditionfrequency: 10-55 -10 HzAmplitude: 1.5mmCycle time: 15 minutesDirection: X,Y,Z (3direction),2 h each.
9.3	Resistance to Heat	Test condition The quartz crystal unit shall be stored at a temperature of +85±2°C for 500 h. Then it shal be subjected to standard atmospheric conditions for 1 h ,after whichi measurement shall be made.
9.4	Resistance to Cold	Test condition The quartz crystal unit shall be stored at a temperature of $-40\pm2^{\circ}$ C for 500 h. Then it shal be subjected to standard atmospheric conditions for 1 h ,after whichi measurement shall be made.
9.5	Thermal Shock	Test condition The quartz crystal unit shall be subjected to 500 succesive change of temperature cycles , each as shown in table below, Then it shall be subjected to standard atmospheric conditions for 1h, after which measurements shall be made. Cycle $:-40\pm2^{\circ}$ C (30min.) $\sim25\pm2^{\circ}$ C (5min. $\sim+85\pm2^{\circ}$ C (30min.) $\sim25\pm2^{\circ}$ C (5min.

KE

B101-11315-431 10(12)

Date: 2011/ 8/ 4

9.6	Resistance to Moisture	Test condition The quartz crystal ur temperature of 60±2 90% to 95% for 240 to standard atmosph which measurements	2°C wich relative h h. Then it shall be s eric conditions for	umidity of subjected							
9.7	Soldering condition	 Material of solder Kind ··· lead free Melting point ··· 2 									
		2) Temp.profile of re	eflow soldering sys	stem							
			Temp [°C]	Time[sec]							
		Peak	260±5	10 (max.)							
		Preheating	180 (typ.)								
		100 (typ.) 200 (max.)									
		Total		200 (IIIax.)							
	Temp. profile of reflow										
9.8	 a) Hand Soldering Temperature: 350°C, Time: 3sec 9.8 Intensity for bending in circuit board Solder this product in center of the circuit board of 40mm×100mm, 										
	Test b	oard : t=1.6mm									
	and add the deflection of 3mm as the bottom figure. Test board : t=1.6mm PUSH 10 1										

KYOCERA KINSEKI CORPORATION

KB101-11315-431

11(12)

10.Cautions for use

(1) Automatic mounting machine use

Please use after affirmation that select the mounting machine model with a shock small if possible in the case of use of an automatic mounting machine, and it does not have breakage. There is a risk of a quartz crystal unit breakage occurring and not functioning normally by too much shock etc..

(2) Conformity of a circuit

In case of use of an oscillation circuit, please insert in a quartz crystal unit in series resistance 5 time as many as the standard value of equivalent in-series resistance, and confirm oscillating. Please remove resistance which inserted after the notes above-mentioned examination in the quartz crystal unit in series, and use it.

(3) After making the Quartz Crystal mount on a printed circuit board ,if it is required to devide the printed circuit board into another one, use it with attentive confirmation so that a warp cased by this dividing might not affect any damage. When designing a printed circuit board as well as handling the mounting As much as possible. The quartz crystal shall be passed through the reflow furnace. Then it shall be subjected to standard atmospheric conditions, after which cleaning shall be made.

11.Storage conditions

Storage at prolonged high temperature or low temperature and the storage by high humidity cause degradation of frequency accuracy, and degradation of soldering nature. Storage is performed at the temperature of 18-30 degrees C, and the humidity of 20-70 Percent in the state of packing, and a term is 6 months.

12.Others

When any questions and opinions are in the written matter of these delivery specifications, I will ask connection of you from the our company issue day within 45 days. In a connection no case, a written matter is consented to it and employed within a term.

Date: 2011/ 8/ 4

13.LOT CALENDAR

WEEK	MONTH	MON	TUE	WED	тни	FRI	SAT	SUN		WEEK	MONTH	MON	TUE	WED	THU	FRI	SAT	SUN
週	月	<u></u>	火	水	*	金	<u>±</u>	B		週	月	月	火	水	木	金	<u>±</u>	E
1053	1							2		1127	7	4	5	6	7	8	9	10
1101		3	4	5	6	7	8	9		1128		11	12	13	14	15	16	<u>, 17</u>
1102		10	11	12	13	14	15	16		1129		18	19	20	21	22	23	24
1103		17	18	19	20	21	22	23		1130		25	26	27	28	29	30	31
1104		24	25	26	27	28	29	30		1131	8	1	2	3	4	5	6	7
1105	2	31	1	2	3	4	5	. 6		1132		8	9	10	11	12	13	14
1106		7	8	9	10	11	12	13		1133		15	16	17	18	19	20	21
1107	-	14	15	16	17	18	19	20		1134		22	23	24	25	26	27	28
1108		21	22	23	24	25	26	27		1135	9	29	30	31	1	2	3	4
1109	3	28	1	2	3	4	5	6		1136	-	5	6	7	8	9	10	11
1110		7	8	9	10	11	12	13		1137	-	12	. 13	14	15	16	17	18
1111		14	15	16	17	18	19	20		1138		19	20	21	22	23	24	25
1112		21	22	23	24	25	26	27		1139	10	26	27	28	29	30	1	2
1113	4	28	29	30	31	1	2	3		1140		3	4	5	6	7	٤ ا	3 9
1114		4	5	6	7	8	S	D T		1141		10	11	12	13	14	15	5 16
1115		11	12	13	14	15	16	17		1142	-	17	18	° 19	20	21	22	2 .23
1116		18	19	20	21	22	23	24		1143		24	25	26	27	28	29	9 30
1117	5	25	26	27	28	29	30)		1144	11	31	1	2	2 3	. 4	<u>ا</u> ا	5 6
1118		2	9	, 4	5	6		8		1145		-	8	ç	10	11	12	2 13
1119		9	10	11	12	13	14	1 15		1146	_	14	15	16	3 17	18	3 19	9 20
1120		16	17	18	3 19	20	21	22		1147		2	22	23	3 24	25	5 2(5 27
1121	-	23	24	25	5 26	i 27	28	3 29		1148	12	28	3 29	30) 1		2 :	3 4
1122	6	30	31		2	2 3	3 2	1 1	5	1149			5 6	3	7 8	}	ə 1(1 0
1123		6	i 7	7 8	3 5) 10) 1	1 12	2	1150		12	2 13	3 14	4 15	5 11	3 1	7 11
1124		13	1	1 18	5 16	5 17	7 11	3 19		1151		1	9 20	2	1 22	2 2	3 2	4 2
1125		20) 21	1 22	2 23	3 24	ŧ 2	5 26	5	1152		20	5 27	7 21	3 29	9 3	0 3	1
1126	7	27	1)	[2 3	3									

KYOCERA KINSEKI CORPORATION

KB101-11315-431