

General Description

The MAX7382 silicon oscillator replaces ceramic resonators, crystals, and crystal-oscillator modules as the clock source for microcontrollers in 3V, 3.3V, and 5V applications. The MAX7382 features a factory-programmed oscillator, a microprocessor (µP) power-onreset (POR) supervisor, and a clock enable input.

Unlike typical crystal and ceramic-resonator oscillator circuits, the MAX7382 is resistant to vibration and EMI. The high-output-drive current and absence of highimpedance nodes makes the oscillator less susceptible to dirty or humid operating conditions. With a wide operating temperature range, the MAX7382 is a good choice for demanding home appliance and automotive environments.

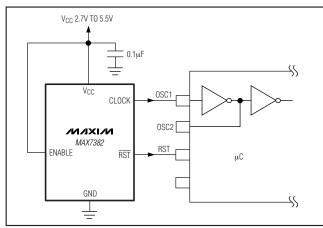
The MAX7382 is available with factory-programmed frequencies ranging from 10MHz to 16MHz. See Table 2 for standard frequencies and contact the factory for custom frequencies and POR thresholds.

The MAX7382 is available in a 5-pin SOT23 package. The MAX7382 operating temperature range is -40°C to +125°C.

Applications

White Goods Automotive Consumer Products Appliances and Controls Handheld Products Portable Equipment Microcontroller Systems

Features


- ♦ 2.7V to 5.5V Operation
- ♦ 10MHz to 16MHz Oscillator
- ♦ Integrated POR (Factory Programmable)
- ♦ ±10mA Clock Output Drive Capability
- ♦ Clock Enable Input
- **♦ 2.5% Initial Accuracy**
- **♦** ±100ppm/°C Frequency Drift
- ♦ 50% Duty Cycle
- ♦ 5ns Output Rise and Fall Time
- ♦ Typical 4.5mA Operating Current at 16MHz
- ◆ Typical 0.5µA Shutdown Supply Current
- ♦ -40°C to +125°C Temperature Range
- ♦ Small 5-Pin SOT23 Package

Ordering Information

PART*	TEMP RANGE	PIN- PACKAGE	RESET OUTPUT
MAX7382B	-T -40°C to +125°C	5 SOT23-5	Active-low push-pull
MAX7382C	-T -40°C to +125°C	5 SOT23-5	Open drain

*Standard version is shown in bold. The first letter after the part number designates the reset output option. Insert the letter corresponding to the desired reset threshold level from Table 1 in the next position. Insert the two-letter code from Table 2 in the remaining two positions for the desired frequency range. Table 1 and Table 2 are located at the end of the data sheet.

Typical Operating Circuit

Pin Configuration appears at end of data sheet.

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.3V to +6.0V
All Other Pins to GND	0.3V to (V _{CC} + 0.3V)
CLOCK, RST Current	±50mA
Input Current (ENABLE)	±50mA
Continuous Power Dissipation (T _A = +	
5-Pin SOT23 (derate 7.1mW/°C above	ve +70°C)571mW (U5-2)

Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10	s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(Typical Operating Circuit, $V_{CC} = 3.0V$ to 5.5V, $T_A = -40^{\circ}C$ to $+125^{\circ}C$. Typical values are at $V_{CC} = 5.0V$, $T_A = +25^{\circ}C$, unless otherwise noted.) (Notes 1 and 2)

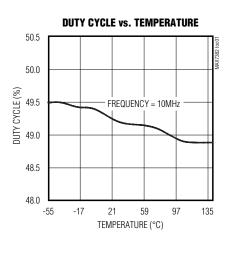
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Operating Supply Voltage	Vcc		2.7		5.5	V	
		fCLOCK = 16MHz, VCC = 5.5V, no load			8.7		
		fCLOCK = 14MHz, VCC = 5.5V, no load			8.0		
Operating Supply Current	Icc	fCLOCK = 12MHz, VCC = 5.5V, no load			6.5	6.5 mA 6.0	
		fcLock = 11MHz, Vcc = 5.5V, no load			6.0		
		f _{CLOCK} = 10MHz, V _{CC} = 5.5V, no load			5.4		
Shutdown Supply Current	ISHDN	ENABLE = 0V		0.5	1	μΑ	
LOGIC INPUTS (ENABLE)							
Input High Voltage	VIH		0.7 x V _C C			V	
Input Low Voltage	V _{IL}				0.3 x V _C C	V	
Input Current	I _{IN}	VCC = VENABLE = 5.5V			2	μΑ	
CLOCK OUTPUT							
		VCC = 4.5V, ISOURCE = 7.0mA					
Output High Voltage	V _{OH}	V _{CC} = 3.0V, I _{SOURCE} = 2.0mA for MAX7382xSxx	V _{CC} - 0.4			V	
	.,,	V _{CC} = 4.5V, I _{SINK} = 20mA			0.4		
Output Low Voltage	VoL	V _{CC} = 3.0V, I _{SINK} = 10mA			0.4	V	
Clock Frequency Accuracy	fclock	V _{CC} = 5V (for MAX7382xMxx) or V _{CC} = 3.3V (for MAX7382xSxx), T _A = +25°C, deviation from nominal frequency	-2.5		+2.5	%	
		V_{CC} = 3.0V to 5.5V, T_A = +25°C, deviation from nominal frequency	-5.0		+3.5		
Clock Temperature Coefficient		(Note 3)		±100	±550	ppm/°C	

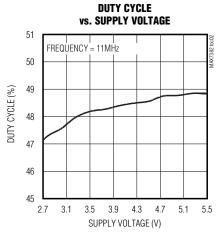
ELECTRICAL CHARACTERISTICS (continued)

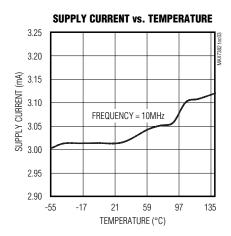
(Typical Operating Circuit, $V_{CC} = 3.0V$ to 5.5V, $T_A = -40^{\circ}C$ to $+125^{\circ}C$. Typical values are at $V_{CC} = 5.0V$, $T_A = +25^{\circ}C$, unless otherwise noted.) (Notes 1 and 2)

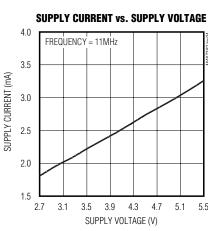
PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS
Duty Cycle		(Note 3)		40	50	60	%
Output Period Jitter	JP	$f_{OUT} = 16MHz; \pm 6\sigma per$	eriod jitter		±240		ps
Output Rise Time	t _R	10% to 90%, C _L = 10p	F		5		ns
Output Fall Time	tF	90% to 10%, C _L = 10p	F		5		ns
Power-On-Reset Threshold		V _{CC} rising, deviation from nominal	T _A = +25°C	-2		+2	. %
Accuracy		threshold (V _{TH}) (Table 1)		-5		+5	%
Power-On-Reset Hysteresis		Difference between rising and falling thresholds			1		%
Power-On-Reset Delay	PORdly	V _{CC} rising from 0 to 5V in 1µs at +25°C			122		μs
RESET OUTPUT (RST)							
Output High Voltage (Note 4)	Vou	V _{CC} = 4.5V, I _{SOURCE} : (MAX7382xMxx)	CC = 4.5V, ISOURCE = 7.0mA (AX7382xMxx) VCC -				V
Output High Voltage (Note 4)	VOH	V _{CC} = 3.0V, I _{SOURCE} = 2.0mA (MAX7382xSxx)		0.4			V
Output Low Voltage	Val	V _{CC} = 4.5V, I _{SINK} = 20mA (MAX7382xMxx) V _{CC} = 3.0V, I _{SINK} = 10mA (MAX7382xSxx)			0.4		V
Output Low Voltage	V _{OL}						

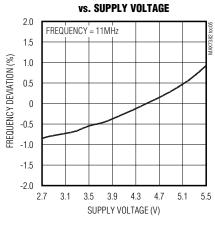
Note 1: All parameters tested at $T_A = +25^{\circ}C$. Specifications over temperature are guaranteed by design.

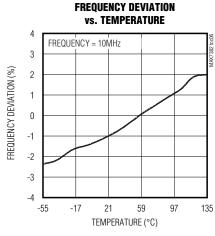

Note 2: Oscillator is enabled when $V_{CC} > V_{TH}$.

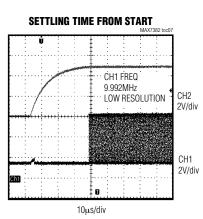

Note 3: Guaranteed by design. Not production tested.

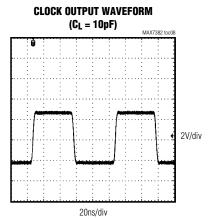

Note 4: For push-pull output only.

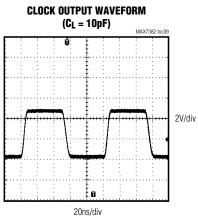

Typical Operating Characteristics


(V_{CC} = V_{ENABLE} = 5V, T_A = +25°C, frequency = 10MHz, unless otherwise noted.)

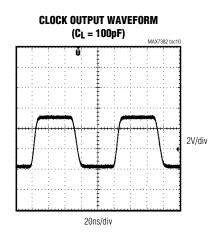


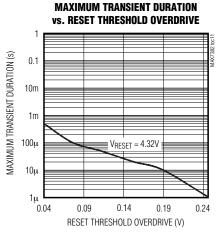


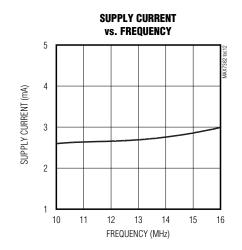




FREQUENCY DEVIATION






CHANNEL 1 = CLOCK, CHANNEL 2 = VCC

Typical Operating Characteristics (continued)

(VCC = VENABLE = 5V, TA = +25°C, frequency = 10MHz, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION	
1	CLOCK	Push-Pull Clock Output	
2	GND	Ground	
3	RST	Reset Output. Open-drain or push-pull output. See the Ordering Information.	
4	Vcc	Positive Supply Voltage. Bypass V _{CC} to GND with a 0.1µF capacitor.	
5	ENABLE	Active High Clock Enable Input. See the ENABLE Input section for more details.	

Detailed Description

The MAX7382 is a clock generator with integrated reset for microcontrollers (μ Cs) and UARTs in 3V, 3.3V, and 5V applications. The MAX7382 is a replacement for crystal-oscillator modules, crystals, or ceramic resonators, and a system reset IC. The clock frequency and reset threshold voltage are factory trimmed to specific values (see Tables 1 and 2). A variety of popular standard frequencies are available. No external components are required for setting or adjusting the frequency.

Oscillator

The push-pull clock output is enabled when $V_{\rm CC} > V_{\rm TH}$ (Table 1) and drives a load to within 400mV of either supply rail. The clock output remains stable over the full

operating voltage range and does not generate short output cycles during either power-on or changing of the frequency. A typical oscillating startup is shown in the *Typical Operating Characteristics*.

ENABLE Input

The MAX7382 has an active-high enable input that controls the clock and reset outputs. The clock output is driven low and $\overline{\text{RST}}$ asserts when the device is disabled. Drive ENABLE low to disable the clock output on next rising edge. Drive ENABLE high to activate the clock output.

Applications Information

Interfacing to a Microcontroller Clock Input

The MAX7382 clock output is a push-pull, CMOS, logic output that directly drives a μP or μC clock input. There are no impedance-matching issues when using the MAX7382. Refer to the microcontroller data sheet for clock input compatibility with external clock signals. The MAX7382 requires no biasing components or load capacitance. When using the MAX7382 to retrofit a crystal oscillator, remove all biasing components from the oscillator input.

Reset Output

The MAX7382 is available with two reset output stage options: push-pull active-low and open-drain active-low. $\overline{\text{RST}}$ is asserted when the monitored input (VCC) drops below the internal VTH threshold and remains asserted for 120µs after the monitored input exceeds the internal VTH threshold. The open-drain $\overline{\text{RST}}$ output requires an external pullup resistor.

Output Jitter

The MAX7382's jitter performance is given in the *Electrical Characteristics* table as a $\pm 6\sigma$ period jitter value. Jitter measurements are approximately proportional to the period of the output of the device. The jitter performance of all clock sources degrades in the presence of mechanical and electrical interference. The MAX7382 is relatively immune to vibration, shock, and EMI influences and thus provides a considerably more robust clock source than crystal or ceramic resonator-based oscillator circuits.

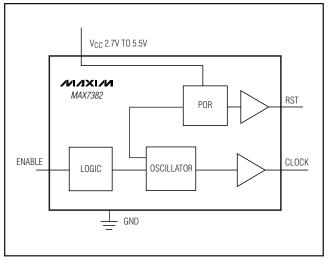


Figure 1. Functional Diagram

Table 1. Standard Reset Threshold Levels

SUFFIX	RESET THRESHOLD (V)		
S	2.89 standard value		
M	4.38 standard value		

Contact factory for nonstandard reset threshold options from $2.5V < V_{TH} < 4.38V$.

Table 2. Standard Frequencies

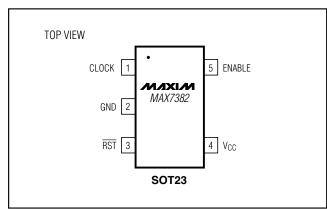
SUFFIX	STANDARD FREQUENCY (MHz)		
UK	10		
UT	11		
VB	12		
VT	14		
WB	16		

For all other frequency options, contact factory.

Table 3. Standard Part Numbers

PART	RESET THRESHOLD (V)	FREQUENCY (MHz)	TOP MARK	
MAX7382CSUK	2.89	10	AEVU	
MAX7382CSUT	2.89	11	AEYG	
MAX7382CSVB	2.89	12	AEVM	
MAX7382CSVT	2.89	14	AEYI	
MAX7382CSWB	2.89	16	AEVK	
MAX7382CMUK	4.38	10	AEXV	
MAX7382CMUT	4.38	11	AEXW	
MAX7382CMVB	4.38	12	AEVJ	
MAX7382CMVT	4.38	14	AEXX	
MAX7382CMWB	4.38	16	AEVH	

Initial Power-Up and Operation

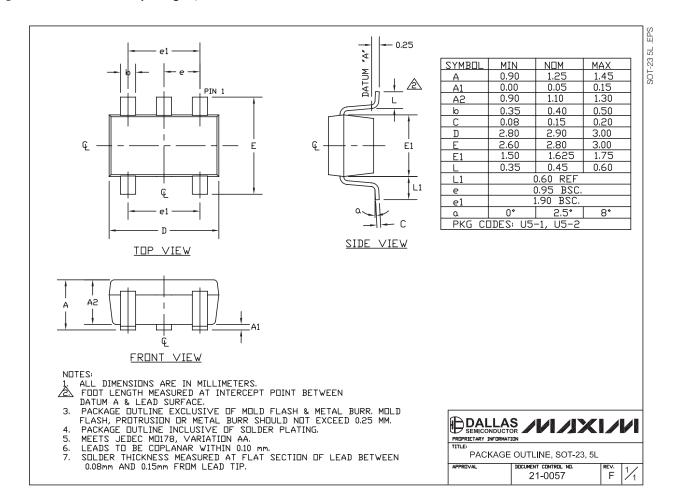

An internal power-up reset holds the clock output low and asserts \overline{RST} until the supply voltage has risen above the power-on-reset threshold (V_{TH}).

RST holds the microcontroller in a reset condition until 120µs after the clock has started up. This reset delay ensures that the clock output and the microcontroller's internal clock circuits have stabilized before the system is allowed to start. Typical microcontroller reset delay ranges from 1ms to 250ms to allow a slow crystal oscillator circuit to start up. The MAX7382 has a fast startup, eliminating the need for such a long reset delay.

Power-Supply Considerations

The MAX7382 operates with a 2.7V and 5.5V power-supply voltage. Good power-supply decoupling is needed to maintain the power-supply rejection performance of the MAX7382. Bypass $V_{\rm CC}$ to GND with a 0.1 μ F surface-mount ceramic capacitor. Mount the bypassing capacitor as close to the device as possible. If possible, mount the MAX7382 close to the microcontroller's decoupling capacitor so that additional decoupling is not required. Use a larger value of bypass capacitor recommended if the MAX7382 is to operate with a large capacitive load. Use a bypass capacitor value of at least 1000 times that of the output load capacitance.

Pin Configuration



Chip Information

PROCESS: BICMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

_Revision History

Pages changed at Rev 1: 1-8

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600